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Abstract: DFD is a depth-traversal functional dependencies discovery method, it does not consider 
association between nodes of power set lattice. We improved DFD by using attribute information 
entropy combined with DFD to reduce the repeated frequencies of traversals. Datasets of UCI are 
used to verify that the improved DFD runs faster than original DFD. 

1. Introduction  
Functional dependencies (FDs) is a key theory in relational database fields [2][3][4]. Finding 

minimal non-trivial FDs attracted many scholars to study.  TANE [5], FD_Mine [6], FUN [7], Fast_FD 

[8] and FDEP[9] proposed in decades. General complexity of FDs mining algorithm is Ω (2m) [10], 
where m is number of columns. 

2. Related Concepts 

Relational mode R={X1, X2 ...Xn}, r is an instance consisting of |r| tuples. For the tuple t∈r, 
denoted as t[X]. 

FD: Academic degree →EDUY is a valid FD since t1 [Academic degree] =t2 [Academic degree] 
and t1 [EDUY] =t2 [EDUY]. X, Y abbreviated as LHS and RHS in FD: X→Y. 

3. Algorithm Dfd 
DFD[11] is a FDs mining algorithm based on partition method, which recombines components 

from TANE and unique column combinations [12]. UCC mining is a sub-problem of the minimal FD. 
For instance r, the unique column combinations must be able to uniquely determine a tuple. After 
DFD determines the unique attribute combination, it still traverses on the attribute power set of 
Figure 1 in a depth-first manner. 

X1 X2 X3 X4

X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

X1X2X3 X1X2X4 X1X3X4 X2X3X4

X1X2X3X4

 
Figure 1. power set lattice R={X1, X2, X3, X4}. 

3.1 Attribute Partition Information Entropy 
3.1.1 Theorem and Inference 

For attribute sets X, Y⊆ R, the partition information entropy are: 

  H(πX)  = −∑ p(𝜋𝜋i)log2p(𝜋𝜋i) n
i=1                                                           (1) 

This is the paragraph spacing that occurs when you use the [ENTER] key. 
According to (1), the information gain between attributes can be obtained: 
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IG (πY|πX)=H(πY) –H(πY |πX)              
Lemma: ∀ FD: X→Y is valid, ∀ FD: X→Z is non-FD, then IG (Y|πX)>IG(πZ|πX). 
Proof: Since FD: X→Y is valid, then 

IG (πY|πX) = H(πX)                                                                                   (2) 
IG (πZ|πX) = H(πZ)-H(πZ|πX)                                                                    (3) 
 H(πX, πZ) = H(πX)+H(πZ|πX)≥max{H(πX),H(πZ)}                                  (4) 

According to (2), (3, (4): Since LHS and RHS of FD are not independent of each other as a 
random variable, therefore IG(πY|πX)>IG(πZ|πX). 

we decides to introduce the information entropy sequence in the findlhs algorithm of DFD, we 
construct a set {IG(Xu| Xi)| n≥i>j≥1,n=|r|} in descending order, LHS with a larger information 
entropy is preferentially picked for computation 

4. Algorithm Dfd Description 

Algorithm Frame 

Algorithm 1 main algorithm 
Input: instance r⊆ dom(X1) ×dom(X2)×…×dom(Xn) 
Output:minimal FDs set mindeps 
1     foreach attribute X∈R :if |πX |=|r| then  R ← R\ {X} 
2     foreach attribute X’ in R\{X} :add{X→X’} to minDepset   
3     foreach RHS∈R: minDepset ←minDepset∪{Y → RHS’|Y ∈ findlhs(RHS, r)} 
4     return minDepsets 
 
Algorithm 2 compute attribute partition information entropy 
Input: Database instance R' after culling the unique attribute 
Output: Attribute information gain sorting pair sequence 
1 foreach attribute X’i∈R’ 
2         foreach attribute X’i∈R’,i≠j 
3             igSeries ← calculate IG(Xi|Xj)         
4   quickSort_Maxtomin(IGseries) 
5    return igSeries 
 
Algorithm 3 compute LHS 
Input: RHS,r’,igSeries 
Output:Minimal FDs set Mindeps 
1    seeds←R\ max{igSeries (X’j|X’i), X’j)} 
2    while !isEmpty(seeds) do 
3        foreach node in seeds 
4     computePar(node) 
5     picknextNode() 
6    seeds ←nextSeeds() 
7    return minDeps 

In Algorithm 3, algorithm preferentially selects an attribute pair with a larger value as the 
starting LHS in igSeries. Algorithm 4 and Algorithm 5 are the same as original DFD. 
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5. Experiment and Analysis 
5.1 Experimental Datasets 

TABLE 1.Dataset. 

Dataset Cols Rows Size(KB) FDs 
iris 5 150 5 4 

balance 5 625 7 1 
chess 7 28056 519 1 

abalone 9 4177 187 137 
nursery 9 12960 1024 1 

Breast-cancer 11 699 20 46 
bridges 13 108 6 142 
adult 14 48842 3528 78 
letter 17 20000 695 61 

5.2 Algorithm Running Time Analysis  
In case of a few potential FDs, DFD ran almost the same time as the improved DFD. However, 

when there are more potential FDs, for example the calculation of adult and letter is more efficient 
compared with original DFD.. 

In the original algorithm 4, for an LHS judged as a candidate Mindep node, LHS is a Mindep 
node when the set of unchecked is empty after LHS removed all subsets that can be pruned. 
However, when set of unchecked subsets is not empty, DFD will randomly pick an unchecked 
subsets of LHS as the next node, and the attribute information entropy sequence igSeries will help 
to pick the node that may has more potential FDs, thus improving efficiency to some degree. 

 
Figure 2. Comparison of algorithm running time under different datasets. 

5.3 Algorithm Memory Consumption Analysis  

 
Figure 3. Comparison of DFD and improved DFD memory consumption under different datasets. 

Since the original DFD has stored the partitions of all attributes when algorithm computes the 
igSeris sequence, the extra memory consumption is only stored in a float type array that only (n2-

n)/2×4 bit≪1MB. 
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6. Conclusion 
In this paper we presented an Improved DFD algorithm that improved original DFD’s random 

traversal strategy by computing the attribute partition information entropy sequence. This algorithm 
does not consider the threshold of the values of igSeries, sorted and computed all attributes. 
Therefore, combining the method of statistical learning methods with this algorithm is one of the 
feasible research directions in the future. 
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