
An Improved DFD Based on Attribute Partition Information Entropy

Liu Bohonga, Jiang Xinyuanb
College of Computer Science and Technology, Chongqing University of Post & Telecommunications,

Chongqing 400065, China.
aliubh@cqupt.edu.cn, bs160231032@stu.cqupt.edu.cn

Keywords: Functional Dependencies; Attribute Partition; Information Entropy.

Abstract: DFD is a depth-traversal functional dependencies discovery method, it does not consider
association between nodes of power set lattice. We improved DFD by using attribute information
entropy combined with DFD to reduce the repeated frequencies of traversals. Datasets of UCI are
used to verify that the improved DFD runs faster than original DFD.

1. Introduction
Functional dependencies (FDs) is a key theory in relational database fields [2][3][4]. Finding

minimal non-trivial FDs attracted many scholars to study. TANE [5], FD_Mine [6], FUN [7], Fast_FD

[8] and FDEP[9] proposed in decades. General complexity of FDs mining algorithm is Ω (2m) [10],
where m is number of columns.

2. Related Concepts

Relational mode R={X1, X2 ...Xn}, r is an instance consisting of |r| tuples. For the tuple t∈r,
denoted as t[X].

FD: Academic degree →EDUY is a valid FD since t1 [Academic degree] =t2 [Academic degree]
and t1 [EDUY] =t2 [EDUY]. X, Y abbreviated as LHS and RHS in FD: X→Y.

3. Algorithm Dfd
DFD[11] is a FDs mining algorithm based on partition method, which recombines components

from TANE and unique column combinations [12]. UCC mining is a sub-problem of the minimal FD.
For instance r, the unique column combinations must be able to uniquely determine a tuple. After
DFD determines the unique attribute combination, it still traverses on the attribute power set of
Figure 1 in a depth-first manner.

X1 X2 X3 X4

X1X2 X1X3 X1X4 X2X3 X2X4 X3X4

X1X2X3 X1X2X4 X1X3X4 X2X3X4

X1X2X3X4

Figure 1. power set lattice R={X1, X2, X3, X4}.

3.1 Attribute Partition Information Entropy
3.1.1 Theorem and Inference

For attribute sets X, Y⊆ R, the partition information entropy are:

 H(πX) = −∑ p(𝜋𝜋i)log2p(𝜋𝜋i) n
i=1 (1)

This is the paragraph spacing that occurs when you use the [ENTER] key.
According to (1), the information gain between attributes can be obtained:

2018 4th International Conference on Systems, Computing, and Big Data (ICSCBD 2018)

Copyright © (2018) Francis Academic Press, UK DOI: 10.25236/icscbd.2018.01166

IG (πY|πX)=H(πY) –H(πY |πX)
Lemma: ∀ FD: X→Y is valid, ∀ FD: X→Z is non-FD, then IG (Y|πX)>IG(πZ|πX).
Proof: Since FD: X→Y is valid, then

IG (πY|πX) = H(πX) (2)
IG (πZ|πX) = H(πZ)-H(πZ|πX) (3)
 H(πX, πZ) = H(πX)+H(πZ|πX)≥max{H(πX),H(πZ)} (4)

According to (2), (3, (4): Since LHS and RHS of FD are not independent of each other as a
random variable, therefore IG(πY|πX)>IG(πZ|πX).

we decides to introduce the information entropy sequence in the findlhs algorithm of DFD, we
construct a set {IG(Xu| Xi)| n≥i>j≥1,n=|r|} in descending order, LHS with a larger information
entropy is preferentially picked for computation

4. Algorithm Dfd Description

Algorithm Frame

Algorithm 1 main algorithm
Input: instance r⊆ dom(X1) ×dom(X2)×…×dom(Xn)
Output:minimal FDs set mindeps
1 foreach attribute X∈R :if |πX |=|r| then R ← R\ {X}
2 foreach attribute X’ in R\{X} :add{X→X’} to minDepset
3 foreach RHS∈R: minDepset ←minDepset∪{Y → RHS’|Y ∈ findlhs(RHS, r)}
4 return minDepsets

Algorithm 2 compute attribute partition information entropy
Input: Database instance R' after culling the unique attribute
Output: Attribute information gain sorting pair sequence
1 foreach attribute X’i∈R’
2 foreach attribute X’i∈R’,i≠j
3 igSeries ← calculate IG(Xi|Xj)
4 quickSort_Maxtomin(IGseries)
5 return igSeries

Algorithm 3 compute LHS
Input: RHS,r’,igSeries
Output:Minimal FDs set Mindeps
1 seeds←R\ max{igSeries (X’j|X’i), X’j)}
2 while !isEmpty(seeds) do
3 foreach node in seeds
4 computePar(node)
5 picknextNode()
6 seeds ←nextSeeds()
7 return minDeps

In Algorithm 3, algorithm preferentially selects an attribute pair with a larger value as the
starting LHS in igSeries. Algorithm 4 and Algorithm 5 are the same as original DFD.

67

5. Experiment and Analysis
5.1 Experimental Datasets

TABLE 1.Dataset.

Dataset Cols Rows Size(KB) FDs
iris 5 150 5 4

balance 5 625 7 1
chess 7 28056 519 1

abalone 9 4177 187 137
nursery 9 12960 1024 1

Breast-cancer 11 699 20 46
bridges 13 108 6 142
adult 14 48842 3528 78
letter 17 20000 695 61

5.2 Algorithm Running Time Analysis
In case of a few potential FDs, DFD ran almost the same time as the improved DFD. However,

when there are more potential FDs, for example the calculation of adult and letter is more efficient
compared with original DFD..

In the original algorithm 4, for an LHS judged as a candidate Mindep node, LHS is a Mindep
node when the set of unchecked is empty after LHS removed all subsets that can be pruned.
However, when set of unchecked subsets is not empty, DFD will randomly pick an unchecked
subsets of LHS as the next node, and the attribute information entropy sequence igSeries will help
to pick the node that may has more potential FDs, thus improving efficiency to some degree.

Figure 2. Comparison of algorithm running time under different datasets.

5.3 Algorithm Memory Consumption Analysis

Figure 3. Comparison of DFD and improved DFD memory consumption under different datasets.

Since the original DFD has stored the partitions of all attributes when algorithm computes the
igSeris sequence, the extra memory consumption is only stored in a float type array that only (n2-

n)/2×4 bit≪1MB.

0 s
100 s
200 s
300 s
400 s

DFD TANE Improved DFD

0 MB
200 MB
400 MB
600 MB

DFD improved DFD

68

6. Conclusion
In this paper we presented an Improved DFD algorithm that improved original DFD’s random

traversal strategy by computing the attribute partition information entropy sequence. This algorithm
does not consider the threshold of the values of igSeries, sorted and computed all attributes.
Therefore, combining the method of statistical learning methods with this algorithm is one of the
feasible research directions in the future.

Acknowledgments
This work was financially supported by Chongqing Research Program of Basic science and

Frontier Technology (No. cstc2016jcyjA0542) fund.

References
[1] Ding Xiaoou, Wang Hongzhi et al.Relationship between multiple properties of data quality
[J].Journal of Software,2016,27(7):1626-1644.
[2] E.F.Codd.A relational model of data for large shared data banks
[J].Commun.ACM,1970,13(6):377-387.
[3] P. Bohannon, W. Fan, and F. Geerts. Conditional functional dependencies for data cleaning[C].
Proceedings of the International Conference on Data Engineering (ICDE),2007:746-755.
[4] Zhong Ping, Li Zhanhuai, Chen Qun.Function dependence detection method in relational
data[J].Chinese Journal of Computers,2017,40(1):207-222.
[5] Nikita Bobrov1, George Chernishev,et al.An Evaluation of TANE Algorithm for Functional
Dependency Detection[J].MEDI.2017:208-222.
[6] H. Yao, H. J. Hamilton, and C. J. Butz. FD Mine: discovering functional dependencies in a
database using equivalences[C]. In Proceedings of the International Conference on Data Mining
(ICDM).2002:729-732.
[7] N. Novelli and R. Cicchetti. FUN: An efficient algorithm for mining functional and embedded
dependencies[C]. In Proceedings of the International Conference on Database Theory (ICDT).2001,
189-203.
[8] C. Wyss, C. Giannella, and E. Robertson.FastFDs:A heuristic-driven, depth-first algorithm for
mining functional dependencies from relation instances extended abstract[C]. In Proceedings of the
International Conference of Data Warehousing and Knowledge Discovery (DaWaK),2001 :101-110.
[9] P.A.Flach,I.Savnik.Database dependency discovery: a machine learning approach[J]. AI
Communications.1999,12(3):139-160.
[10] HeiKKi Mannila,Kari-Jouko Raiha.On the complexity of inferring functional dependencies[J].
Discrete Appl.Math,1992,40:237-243.
[11] Ziawasch Abidjan, Patrick Schulze, Felix Naumann.DFD:Efficient Functional Dependency
Discovery[C].Proc-eedings of International Conference on Information and Knowldege
Management(CIKM),2014:949-958.
[12] Z.Abedjan and F.Naumann.Advancing the discovery of unique column combinations.In
CIKM,2011:1565-1570.
[13] Y.Huhtala,J.Karkkainen,P.Porkka,H.Toivonen.TANE:An efficient algorithm for discovering
functional and approximate dependencies.The Computer Journal,1999:100-111.

69

	1. Introduction
	2. Related Concepts
	3. Algorithm Dfd
	3.1 Attribute Partition Information Entropy
	3.1.1 Theorem and Inference

	4. Algorithm Dfd Description
	Algorithm Frame

	5. Experiment and Analysis
	5.1 Experimental Datasets
	5.2 Algorithm Running Time Analysis
	5.3 Algorithm Memory Consumption Analysis

	6. Conclusion
	Acknowledgments
	References

